
Get Started Examples Prediction

Prediction Market Contract

The Prediction Market contract sets up a scenario to

determine the outcome of a football game between two

teams. The contract uses the Equivalence Principle to

ensure accurate and consistent decision-making based on

the game's resolution data.

import json
from genvm.base.equivalence_principle import Equivalen
from genvm.base.icontract import IContract

class PredictionMarket(IContract):
 def __init__(self, game_date: str, team1: str, tea
 """
 Initializes a new instance of the prediction m

 Args:
 game_date (str): The date of the game in t
 team1 (str): The name of the first team.
 team2 (str): The name of the second team.

 Attributes:
 has_resolved (bool): Indicates whether the
 game_date (str): The date of the game.
 resolution_url (str): The URL to the game'

PredictionMarket

https://docs.genlayer.com/simulator
https://docs.genlayer.com/simulator/use-cases

 team1 (str): The name of the first team.
 team2 (str): The name of the second team.
 """
 self.has_resolved = False
 self.game_date = game_date
 self.resolution_url = 'https://www.bbc.com/spo
 self.team1 = team1
 self.team2 = team2

 async def resolve(self) -> None:

 if self.has_resolved:
 return "Already resolved"

 final_result = {}
 async with EquivalencePrinciple(
 result=final_result,
 principle="The score and the winner ha
 comparative=True,
) as eq:
 web_data = await eq.get_webpage(self.resol
 print(web_data)

 task = f"""In the following web page, find
 Team 1: {self.team1}
 Team 2: {self.team2}

 Web page content:
 {web_data}
 End of web page data.

 If it says "Kick off [time]" between the n
 If you fail to extract the score, assume t

 Respond with the following JSON format:

You can check out this code on our GitHub

Deploying the Contract

To deploy the Prediction Market contract, you'll need to

initialize the contract state correctly. This will impact how

the contract will respond to the game's resolution.

�. Provide the game date and the names of the two teams.

The game_date , team1 , and team2 constructor

 {{
 "score": str, // The score with number
 "winner": int, // The number of the wi
 }}
 """
 result = await eq.call_llm(task)
 print(result)
 eq.set(result)

 result_json = json.loads(final_result['output'

 if result_json['winner'] > -1:
 self.has_resolved = True
 self.winner = result_json['winner']
 self.score = result_json['score']

 return result_json

https://github.com/yeagerai/genlayer-simulator/blob/main/examples/contracts/football_prediction_market.py

parameters are automatically detected from the code.

For example, you might set game_date to "2024-0�-

05", team1 to "Brazil", and team2 to "Jamaica".

�. Once the game details are set, deploy the contract to

make it ready to interact and resolve the game results.

Checking the Contract State

Once the contract is deployed, you can check its state in the

Current Intelligent Contract State section. This section

displays the contract address and the current account.

Executing Transactions

To interact with the deployed contract, go to the Execute

Transactions section. Here, you can call the resolve

method to process the game's result. This triggers the

contract's logic to retrieve the game's data and determine

the outcome based on the Equivalence Principle criteria

defined.

Analyzing the Contract's

Decisions

Analyzing the Contract's

Decisions

When the resolve method is executed:

The LLM retrieves the game data from the specified URL.

It validates the game's outcome according to the

Equivalence Principle defined in the code.

Finally, it returns a JSON response that includes the

game's score and the winner.

Handling Different Scenarios

If the game has started but not finished, the JSON

response will indicate the game is not resolved yet.

If the game has finished, the JSON response will include

the final score and the winning team.

If the game hasn't started, the JSON response will

indicate this status.

You can view the logs to see detailed information about the

contract interaction.

Last updated on June �, 2024

GenLayer Documentation

